skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bai, Guangji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 3, 2026
  2. Free, publicly-accessible full text available May 7, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available December 10, 2025
  6. Free, publicly-accessible full text available December 7, 2025
  7. Free, publicly-accessible full text available December 7, 2025
  8. Visual explanation (attention)-guided learning uses not only labels but also explanations to guide the model reasoning process. While visual attention-guided learning has shown promising results, it requires a large number of explanation annotations that are time-consuming to prepare. However, in many real-world situations, it is usually desired to prompt the model with visual attention without model retraining. For example, when doing AI-assisted cancer classification on a medical image, users (e.g., clinicians) can provide the AI model with visual attention prompts on which areas are indispensable and which are precluded. Despite its promising objectives, achieving visual attention-prompted prediction presents several major challenges: 1) How can the visual prompt be effectively integrated into the model's reasoning process? 2) How should the model handle samples that lack visual prompts? 3) What is the impact on the model's performance when a visual prompt is imperfect? This paper introduces a novel framework for visual attention prompted prediction and learning, utilizing visual prompts to steer the model's reasoning process. To improve performance in non-prompted situations and align it with prompted scenarios, we propose a co-training approach for both non-prompted and prompted models, ensuring they share similar parameters and activation. Additionally, for instances where the visual prompt does not encompass the entire input image, we have developed innovative attention prompt refinement methods. These methods interpolate the incomplete prompts while maintaining alignment with the model's explanations. Extensive experiments on four datasets demonstrate the effectiveness of our proposed framework in enhancing predictions for samples both with and without prompt. 
    more » « less
  9. In recent years, analyzing the explanation for the prediction of Graph Neural Networks (GNNs) has attracted increasing attention. Despite this progress, most existing methods do not adequately consider the inherent uncertainties stemming from the randomness of model parameters and graph data, which may lead to overconfidence and misguiding explanations. However, it is challenging for most of GNN explanation methods to quantify these uncertainties since they obtain the prediction explanation in apost-hocand model-agnostic manner without considering the randomness ofgraph dataandmodel parameters. To address the above problems, this paper proposes a novel uncertainty quantification framework for GNN explanations. For mitigating the randomness of graph data in the explanation, our framework accounts for two distinct data uncertainties, allowing for a direct assessment of the uncertainty in GNN explanations. For mitigating the randomness of learned model parameters, our method learns the parameter distribution directly from the data, obviating the need for assumptions about specific distributions. Moreover, the explanation uncertainty within model parameters is also quantified based on the learned parameter distributions. This holistic approach can integrate with anypost-hocGNN explanation methods. Empirical results from our study show that our proposed method sets a new standard for GNN explanation performance across diverse real-world graph benchmarks. 
    more » « less